Describing Motion

Questions

Q1.

Which row of the table is correct for both force and velocity?

	force	velocity
\square A	scalar	scalar
\square B	scalar	vector
\square C	vector	scalar
\square D	vector	vector

Q2.

Which of these statements is true for a vector quantity?A It has size onlyB It has direction onlyC It has direction and sizeD It does not have direction or size

Q3.

Figure 8 is a velocity/time graph showing a 34 s part of a train's journey.

Figure 8
(i) Calculate the acceleration of the train in the 34 s .

Give your answer to an appropriate number of significant figures.
acceleration $=$ \qquad $\mathrm{m} / \mathrm{s}^{2}$
(ii) Calculate the distance the train travels in the 34 s .

Q4.

A car is travelling at $10 \mathrm{~m} / \mathrm{s}$.
The driver sees a danger and stops the car.
(i) The stopping distance for the car would be smaller if the car
\square A had more passengersB had worn tyres
C needed new brakesD was travelling more slowly

Figure 4 shows a speed-time graph for the driver stopping the car.

Figure 4
(ii) Use the graph to find the driver's reaction time.

Q5.

A car travelling at $15 \mathrm{~m} / \mathrm{s}$ comes to rest in a distance of 14 m when the brakes are applied.
Calculate the deceleration of the car.
Use an equation selected from the list of equations at the end of this paper.
deceleration $=$
$\mathrm{m} / \mathrm{s}^{2}$
(Total for question = 3 marks)

Q6.

Quantities can be either scalar or vector.
Which of these is a vector quantity?

A massB forceC energyD distance

Q7.
\square A energyB force
\square C mass
■ D work
(Total for question = 1 mark)

Q8.

Which of these graphs represents an object moving with a constant velocity of $2 \mathrm{~m} / \mathrm{s}$?
\square

$\square c$

D

Q9.
Figure 1 shows a speed/time graph for a car.

Figure 1
(i) The graph in Figure 1 is divided into four parts, $\mathbf{P}, \mathbf{Q}, \mathbf{R}$ and \mathbf{S}.

Draw a line from the letter for each part to the correct description of the motion during that part.
One line has been drawn for you.
part
P

(ii) In two parts of the graph in Figure 1 the forces are balanced.

State the letters of the two parts of the graph where the horizontal forces acting on the car are balanced.
description of the motion
the car is standing still
part \qquad and part \qquad
(iii) Calculate the distance travelled by the car in part Q.

Use the equation

$$
\text { distance travelled }=\text { average speed } \times \text { time }
$$

\qquad

Q10.

Which of these speeds would be normal for a person walking?

B $\quad 1.0 \mathrm{~m} / \mathrm{s}$C $\quad 10 \mathrm{~m} / \mathrm{s}$D $100 \mathrm{~m} / \mathrm{s}$

Mark Scheme - Describing Motion

Q1.

Question Number	Answer	Mark
	D vector vector The only correct answer is D A 'scalar scalar' is incorrect, both force and velocity are vectors B 'scalar vector' is incorrect, with force being described incorrectly as a scalar C 'vector scalar' is incorrect, with velocity being described incorrectly as a scalar	(1) AO 11

Q2.

Question number	Answer	Mark
	C It has direction and size Option C is the only correct combination for a vector quantity	(1) AO1

Q3.

Question number	Answer	Additional guidance	Mark
(ii)	attempt to calculate area under the line (1) calculates EITHER area of triangle OR area of rectangle (1) $204(m)$ or 476 (m)	accept count squares use of $v^{2}-u^{2}=2 a x$	(3) AO2 evaluation (1) $\underline{v}^{2}-u^{2}$ $2 a$ allow ecf from b(i)

Q4.

Question number	Answer	Additional guidance	Mark
(i)	D travelling more slowly A is incorrect, more passengers would increase the stopping distance	AO1 B is incorrect, worn tyres would increase the stopping distance	
C is incorrect, if the car needed			
new brakes this would			
increase the stopping			
distance			

Question number	Answer	Additional guidance	Mark
(ii)	identification of horizontal line as reaction time (1)		(2) AO3
	evaluation (1) 0.6 (s)	award full marks for correct answer without working	

Q5.

Question Number	Answer	Additional guidance	Mark
	$\begin{aligned} & \text { rearrangement (1) } \\ & a=\frac{\left(\mathrm{v}^{2}-\right) \mathrm{u}^{2}}{2 \mathrm{x}} \\ & \text { substitution (1) } \\ & \mathrm{a}=\frac{(-) 15^{2}}{2 \times 14} \\ & \text { evaluation (1) } \\ & \text { deceleration }=8(.04)\left(\mathrm{m} / \mathrm{s}^{2}\right) \end{aligned}$	rearrangement and substitution in either order 225/28 for 2 marks accept $-8(.04)$ award full marks for the correct answer with no working	(3) AO 21

Q6.

Question number	Answer	Additional guidance	Mark
	B force		(1) A is incorrect, mass is a scalar quantity C in incorrect, energy is a scalar quantity D in incorect, distance is a scalar quantity

Q7.

Question number	Answer	Mark
	® force Options A, C and D are all scalars.	$\mathbf{(1)}$

Q8.

Question number	Answer	Mark
CS4	$[\mathrm{x}] \mathbf{C}$	$\begin{aligned} & \text { (1) } \\ & \text { AO3 } \end{aligned}$
	A is not correct because it shows a constant velocity of $0.4 \mathrm{~m} / \mathrm{s}$	
	B and D are not correct because they show constant acceleration.	

Q9.
$\left.\begin{array}{|c|l|l|l|}\hline \begin{array}{c}\text { Question } \\ \text { Number }\end{array} & \text { Answer } & \text { Mark } \\ \hline \text { (i) } & \begin{array}{l}\text { all three correct (2) } \\ \text { one or two correct (1) }\end{array} & \text { (2) } \\ & & \text { descipiten of the motion }\end{array}\right]$

Question Number	Answer	Additional guidance	Mark
(ii)	Q and S Q (1) (and) S (1) OR S (1) (and) Q (1)	in either order maximum of 1 mark if 3 letters given no marks if 4 or more letters given	(2)

Question Number	Answer	Additional guidance	Mark
(iii)	substitution (1)	for $1^{\text {st }} \mathrm{mp}$ accept 100×30	(2)
	(distance =) 30×100 evaluation (1) $3000(\mathrm{~m})$	OR $(30 \times 50) \times 2$ award full marks for the correct answer without working allow 1 mark for EITHER 30×50	
		OR 30×150 OR 30×250	

Q10.

Question Number	Answer	Mark
	A $1.0 \mathrm{~m} / \mathrm{s} \quad$ The only correct answer is B crawling pace C $10 \mathrm{~m} / \mathrm{s}$ is incorrect, being an Olympic sprinter's pace, much too fast for 'walking' D $100 \mathrm{~m} / \mathrm{s}$ is incorrect, being a very fast sport's car's pace	(1)

